3.3.43 \(\int \frac {(a+b \text {ArcSin}(c x))^2}{x^4 \sqrt {d-c^2 d x^2}} \, dx\) [243]

Optimal. Leaf size=319 \[ -\frac {b^2 c^2 \left (1-c^2 x^2\right )}{3 x \sqrt {d-c^2 d x^2}}-\frac {b c \sqrt {1-c^2 x^2} (a+b \text {ArcSin}(c x))}{3 x^2 \sqrt {d-c^2 d x^2}}-\frac {2 i c^3 \sqrt {1-c^2 x^2} (a+b \text {ArcSin}(c x))^2}{3 \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^2}{3 d x^3}-\frac {2 c^2 \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^2}{3 d x}+\frac {4 b c^3 \sqrt {1-c^2 x^2} (a+b \text {ArcSin}(c x)) \log \left (1-e^{2 i \text {ArcSin}(c x)}\right )}{3 \sqrt {d-c^2 d x^2}}-\frac {2 i b^2 c^3 \sqrt {1-c^2 x^2} \text {PolyLog}\left (2,e^{2 i \text {ArcSin}(c x)}\right )}{3 \sqrt {d-c^2 d x^2}} \]

[Out]

-1/3*b^2*c^2*(-c^2*x^2+1)/x/(-c^2*d*x^2+d)^(1/2)-1/3*b*c*(a+b*arcsin(c*x))*(-c^2*x^2+1)^(1/2)/x^2/(-c^2*d*x^2+
d)^(1/2)-2/3*I*c^3*(a+b*arcsin(c*x))^2*(-c^2*x^2+1)^(1/2)/(-c^2*d*x^2+d)^(1/2)+4/3*b*c^3*(a+b*arcsin(c*x))*ln(
1-(I*c*x+(-c^2*x^2+1)^(1/2))^2)*(-c^2*x^2+1)^(1/2)/(-c^2*d*x^2+d)^(1/2)-2/3*I*b^2*c^3*polylog(2,(I*c*x+(-c^2*x
^2+1)^(1/2))^2)*(-c^2*x^2+1)^(1/2)/(-c^2*d*x^2+d)^(1/2)-1/3*(a+b*arcsin(c*x))^2*(-c^2*d*x^2+d)^(1/2)/d/x^3-2/3
*c^2*(a+b*arcsin(c*x))^2*(-c^2*d*x^2+d)^(1/2)/d/x

________________________________________________________________________________________

Rubi [A]
time = 0.28, antiderivative size = 319, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.310, Rules used = {4789, 4771, 4721, 3798, 2221, 2317, 2438, 4723, 270} \begin {gather*} -\frac {2 c^2 \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^2}{3 d x}-\frac {b c \sqrt {1-c^2 x^2} (a+b \text {ArcSin}(c x))}{3 x^2 \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^2}{3 d x^3}-\frac {2 i c^3 \sqrt {1-c^2 x^2} (a+b \text {ArcSin}(c x))^2}{3 \sqrt {d-c^2 d x^2}}+\frac {4 b c^3 \sqrt {1-c^2 x^2} \log \left (1-e^{2 i \text {ArcSin}(c x)}\right ) (a+b \text {ArcSin}(c x))}{3 \sqrt {d-c^2 d x^2}}-\frac {2 i b^2 c^3 \sqrt {1-c^2 x^2} \text {Li}_2\left (e^{2 i \text {ArcSin}(c x)}\right )}{3 \sqrt {d-c^2 d x^2}}-\frac {b^2 c^2 \left (1-c^2 x^2\right )}{3 x \sqrt {d-c^2 d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSin[c*x])^2/(x^4*Sqrt[d - c^2*d*x^2]),x]

[Out]

-1/3*(b^2*c^2*(1 - c^2*x^2))/(x*Sqrt[d - c^2*d*x^2]) - (b*c*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x]))/(3*x^2*Sqrt
[d - c^2*d*x^2]) - (((2*I)/3)*c^3*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^2)/Sqrt[d - c^2*d*x^2] - (Sqrt[d - c^2
*d*x^2]*(a + b*ArcSin[c*x])^2)/(3*d*x^3) - (2*c^2*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^2)/(3*d*x) + (4*b*c^
3*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])*Log[1 - E^((2*I)*ArcSin[c*x])])/(3*Sqrt[d - c^2*d*x^2]) - (((2*I)/3)*b
^2*c^3*Sqrt[1 - c^2*x^2]*PolyLog[2, E^((2*I)*ArcSin[c*x])])/Sqrt[d - c^2*d*x^2]

Rule 270

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*
c*(m + 1))), x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[(m + 1)/n + p + 1, 0] && NeQ[m, -1]

Rule 2221

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x]
 - Dist[d*(m/(b*f*g*n*Log[F])), Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2317

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 3798

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Simp[I*((c + d*x)^(m + 1)/(d*(
m + 1))), x] - Dist[2*I, Int[(c + d*x)^m*E^(2*I*k*Pi)*(E^(2*I*(e + f*x))/(1 + E^(2*I*k*Pi)*E^(2*I*(e + f*x))))
, x], x] /; FreeQ[{c, d, e, f}, x] && IntegerQ[4*k] && IGtQ[m, 0]

Rule 4721

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/(x_), x_Symbol] :> Subst[Int[(a + b*x)^n*Cot[x], x], x, ArcSin[c*
x]] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0]

Rule 4723

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcSi
n[c*x])^n/(d*(m + 1))), x] - Dist[b*c*(n/(d*(m + 1))), Int[(d*x)^(m + 1)*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 -
 c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 4771

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(
f*x)^(m + 1)*(d + e*x^2)^(p + 1)*((a + b*ArcSin[c*x])^n/(d*f*(m + 1))), x] - Dist[b*c*(n/(f*(m + 1)))*Simp[(d
+ e*x^2)^p/(1 - c^2*x^2)^p], Int[(f*x)^(m + 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /;
FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && EqQ[m + 2*p + 3, 0] && NeQ[m, -1]

Rule 4789

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(
f*x)^(m + 1)*(d + e*x^2)^(p + 1)*((a + b*ArcSin[c*x])^n/(d*f*(m + 1))), x] + (Dist[c^2*((m + 2*p + 3)/(f^2*(m
+ 1))), Int[(f*x)^(m + 2)*(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, x], x] - Dist[b*c*(n/(f*(m + 1)))*Simp[(d + e*x
^2)^p/(1 - c^2*x^2)^p], Int[(f*x)^(m + 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; Free
Q[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && ILtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\left (a+b \sin ^{-1}(c x)\right )^2}{x^4 \sqrt {d-c^2 d x^2}} \, dx &=-\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{3 d x^3}+\frac {1}{3} \left (2 c^2\right ) \int \frac {\left (a+b \sin ^{-1}(c x)\right )^2}{x^2 \sqrt {d-c^2 d x^2}} \, dx+\frac {\left (2 b c \sqrt {1-c^2 x^2}\right ) \int \frac {a+b \sin ^{-1}(c x)}{x^3} \, dx}{3 \sqrt {d-c^2 d x^2}}\\ &=-\frac {b c \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{3 x^2 \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{3 d x^3}-\frac {2 c^2 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{3 d x}+\frac {\left (b^2 c^2 \sqrt {1-c^2 x^2}\right ) \int \frac {1}{x^2 \sqrt {1-c^2 x^2}} \, dx}{3 \sqrt {d-c^2 d x^2}}+\frac {\left (4 b c^3 \sqrt {1-c^2 x^2}\right ) \int \frac {a+b \sin ^{-1}(c x)}{x} \, dx}{3 \sqrt {d-c^2 d x^2}}\\ &=-\frac {b^2 c^2 \left (1-c^2 x^2\right )}{3 x \sqrt {d-c^2 d x^2}}-\frac {b c \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{3 x^2 \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{3 d x^3}-\frac {2 c^2 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{3 d x}+\frac {\left (4 b c^3 \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int (a+b x) \cot (x) \, dx,x,\sin ^{-1}(c x)\right )}{3 \sqrt {d-c^2 d x^2}}\\ &=-\frac {b^2 c^2 \left (1-c^2 x^2\right )}{3 x \sqrt {d-c^2 d x^2}}-\frac {b c \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{3 x^2 \sqrt {d-c^2 d x^2}}-\frac {2 i c^3 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{3 \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{3 d x^3}-\frac {2 c^2 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{3 d x}-\frac {\left (8 i b c^3 \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \frac {e^{2 i x} (a+b x)}{1-e^{2 i x}} \, dx,x,\sin ^{-1}(c x)\right )}{3 \sqrt {d-c^2 d x^2}}\\ &=-\frac {b^2 c^2 \left (1-c^2 x^2\right )}{3 x \sqrt {d-c^2 d x^2}}-\frac {b c \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{3 x^2 \sqrt {d-c^2 d x^2}}-\frac {2 i c^3 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{3 \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{3 d x^3}-\frac {2 c^2 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{3 d x}+\frac {4 b c^3 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1-e^{2 i \sin ^{-1}(c x)}\right )}{3 \sqrt {d-c^2 d x^2}}-\frac {\left (4 b^2 c^3 \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \log \left (1-e^{2 i x}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{3 \sqrt {d-c^2 d x^2}}\\ &=-\frac {b^2 c^2 \left (1-c^2 x^2\right )}{3 x \sqrt {d-c^2 d x^2}}-\frac {b c \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{3 x^2 \sqrt {d-c^2 d x^2}}-\frac {2 i c^3 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{3 \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{3 d x^3}-\frac {2 c^2 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{3 d x}+\frac {4 b c^3 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1-e^{2 i \sin ^{-1}(c x)}\right )}{3 \sqrt {d-c^2 d x^2}}+\frac {\left (2 i b^2 c^3 \sqrt {1-c^2 x^2}\right ) \text {Subst}\left (\int \frac {\log (1-x)}{x} \, dx,x,e^{2 i \sin ^{-1}(c x)}\right )}{3 \sqrt {d-c^2 d x^2}}\\ &=-\frac {b^2 c^2 \left (1-c^2 x^2\right )}{3 x \sqrt {d-c^2 d x^2}}-\frac {b c \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )}{3 x^2 \sqrt {d-c^2 d x^2}}-\frac {2 i c^3 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{3 \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{3 d x^3}-\frac {2 c^2 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{3 d x}+\frac {4 b c^3 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1-e^{2 i \sin ^{-1}(c x)}\right )}{3 \sqrt {d-c^2 d x^2}}-\frac {2 i b^2 c^3 \sqrt {1-c^2 x^2} \text {Li}_2\left (e^{2 i \sin ^{-1}(c x)}\right )}{3 \sqrt {d-c^2 d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.51, size = 269, normalized size = 0.84 \begin {gather*} -\frac {\sqrt {1-c^2 x^2} \left (a b c x+a^2 \sqrt {1-c^2 x^2}+2 a^2 c^2 x^2 \sqrt {1-c^2 x^2}+b^2 c^2 x^2 \sqrt {1-c^2 x^2}+b^2 \left (2 i c^3 x^3+\sqrt {1-c^2 x^2}+2 c^2 x^2 \sqrt {1-c^2 x^2}\right ) \text {ArcSin}(c x)^2-b \text {ArcSin}(c x) \left (-b c x-2 a \sqrt {1-c^2 x^2} \left (1+2 c^2 x^2\right )+4 b c^3 x^3 \log \left (1-e^{2 i \text {ArcSin}(c x)}\right )\right )-4 a b c^3 x^3 \log (c x)+2 i b^2 c^3 x^3 \text {PolyLog}\left (2,e^{2 i \text {ArcSin}(c x)}\right )\right )}{3 x^3 \sqrt {d-c^2 d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcSin[c*x])^2/(x^4*Sqrt[d - c^2*d*x^2]),x]

[Out]

-1/3*(Sqrt[1 - c^2*x^2]*(a*b*c*x + a^2*Sqrt[1 - c^2*x^2] + 2*a^2*c^2*x^2*Sqrt[1 - c^2*x^2] + b^2*c^2*x^2*Sqrt[
1 - c^2*x^2] + b^2*((2*I)*c^3*x^3 + Sqrt[1 - c^2*x^2] + 2*c^2*x^2*Sqrt[1 - c^2*x^2])*ArcSin[c*x]^2 - b*ArcSin[
c*x]*(-(b*c*x) - 2*a*Sqrt[1 - c^2*x^2]*(1 + 2*c^2*x^2) + 4*b*c^3*x^3*Log[1 - E^((2*I)*ArcSin[c*x])]) - 4*a*b*c
^3*x^3*Log[c*x] + (2*I)*b^2*c^3*x^3*PolyLog[2, E^((2*I)*ArcSin[c*x])]))/(x^3*Sqrt[d - c^2*d*x^2])

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 2318 vs. \(2 (301 ) = 602\).
time = 0.56, size = 2319, normalized size = 7.27

method result size
default \(\text {Expression too large to display}\) \(2319\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsin(c*x))^2/x^4/(-c^2*d*x^2+d)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/3*b^2*(-d*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d*x^5*c^8-1/3*b^2*(-d*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*
c^2*x^2-1)/d*x^3*c^6+2/3*b^2*(-d*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d*x*c^4+1/3*b^2*(-d*(c^2*x^2-1))^(
1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d/x*c^2+1/3*b^2*(-d*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d/x^3*arcsin(c*x)^
2+a^2*(-1/3/d/x^3*(-c^2*d*x^2+d)^(1/2)-2/3*c^2/d/x*(-c^2*d*x^2+d)^(1/2))-4/3*I*a*b*(-d*(c^2*x^2-1))^(1/2)/(3*c
^4*x^4-2*c^2*x^2-1)/d*x^3*(-c^2*x^2+1)*c^6-2/3*I*a*b*(-d*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d*x*(-c^2*
x^2+1)*c^4-4/3*I*a*b*(-d*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d*arcsin(c*x)*(-c^2*x^2+1)^(1/2)*c^3+8/3*I
*a*b*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/d/(c^2*x^2-1)*arcsin(c*x)*c^3+2/3*I*a*b*(-d*(c^2*x^2-1))^(1/2)/
(3*c^4*x^4-2*c^2*x^2-1)/d*x*c^4-4/3*I*a*b*(-d*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d*x^5*c^8-4*a*b*(-d*(
c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d*x^3*arcsin(c*x)*c^6+2/3*I*a*b*(-d*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*
c^2*x^2-1)/d*x^3*c^6+2/3*a*b*(-d*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d*x*arcsin(c*x)*c^4+8/3*a*b*(-d*(c
^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d/x*arcsin(c*x)*c^2+1/3*a*b*(-d*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x
^2-1)/d/x^2*(-c^2*x^2+1)^(1/2)*c-4/3*a*b*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/d/(c^2*x^2-1)*ln((I*c*x+(-c
^2*x^2+1)^(1/2))^2-1)*c^3+a*b*(-d*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d*(-c^2*x^2+1)^(1/2)*c^3+2/3*a*b*
(-d*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d/x^3*arcsin(c*x)+4/3*b^2*(-d*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c
^2*x^2-1)/d/x*arcsin(c*x)^2*c^2+b^2*(-d*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d*arcsin(c*x)*(-c^2*x^2+1)^
(1/2)*c^3-1/3*I*b^2*(-d*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d*(-c^2*x^2+1)^(1/2)*c^3-4*I*a*b*(-d*(c^2*x
^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d*x^2*arcsin(c*x)*(-c^2*x^2+1)^(1/2)*c^5-4/3*I*b^2*(-d*(c^2*x^2-1))^(1/2)
/(3*c^4*x^4-2*c^2*x^2-1)/d*x^3*arcsin(c*x)*(-c^2*x^2+1)*c^6-2*I*b^2*(-d*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^
2-1)/d*x^2*arcsin(c*x)^2*(-c^2*x^2+1)^(1/2)*c^5-2/3*I*b^2*(-d*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d*x*a
rcsin(c*x)*(-c^2*x^2+1)*c^4+1/3*b^2*(-d*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d/x^2*arcsin(c*x)*(-c^2*x^2
+1)^(1/2)*c-I*b^2*(-d*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d*x^2*(-c^2*x^2+1)^(1/2)*c^5+2/3*I*b^2*(-d*(c
^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d*x*arcsin(c*x)*c^4+4/3*I*b^2*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/
2)/d/(c^2*x^2-1)*c^3*arcsin(c*x)^2-4/3*b^2*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/d/(c^2*x^2-1)*c^3*arcsin(
c*x)*ln(1+I*c*x+(-c^2*x^2+1)^(1/2))-4/3*b^2*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/d/(c^2*x^2-1)*c^3*arcsin
(c*x)*ln(1-I*c*x-(-c^2*x^2+1)^(1/2))+2/3*I*b^2*(-d*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d*x^3*arcsin(c*x
)*c^6+4/3*I*b^2*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/d/(c^2*x^2-1)*c^3*polylog(2,-I*c*x-(-c^2*x^2+1)^(1/2
))+4/3*I*b^2*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/d/(c^2*x^2-1)*c^3*polylog(2,I*c*x+(-c^2*x^2+1)^(1/2))-2
/3*I*b^2*(-d*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d*arcsin(c*x)^2*(-c^2*x^2+1)^(1/2)*c^3-4/3*I*b^2*(-d*(
c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d*x^5*arcsin(c*x)*c^8-2/3*b^2*(-d*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^
2*x^2-1)/d*x^3*(-c^2*x^2+1)*c^6-2*b^2*(-d*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d*x^3*arcsin(c*x)^2*c^6+1
/3*b^2*(-d*(c^2*x^2-1))^(1/2)/(3*c^4*x^4-2*c^2*x^2-1)/d*x*arcsin(c*x)^2*c^4

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))^2/x^4/(-c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

1/3*(4*c^2*log(x)/sqrt(d) - 1/(sqrt(d)*x^2))*a*b*c - 2/3*a*b*(2*sqrt(-c^2*d*x^2 + d)*c^2/(d*x) + sqrt(-c^2*d*x
^2 + d)/(d*x^3))*arcsin(c*x) - 1/3*a^2*(2*sqrt(-c^2*d*x^2 + d)*c^2/(d*x) + sqrt(-c^2*d*x^2 + d)/(d*x^3)) + b^2
*integrate(arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1))^2/(sqrt(c*x + 1)*sqrt(-c*x + 1)*x^4), x)/sqrt(d)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))^2/x^4/(-c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-c^2*d*x^2 + d)*(b^2*arcsin(c*x)^2 + 2*a*b*arcsin(c*x) + a^2)/(c^2*d*x^6 - d*x^4), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + b \operatorname {asin}{\left (c x \right )}\right )^{2}}{x^{4} \sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asin(c*x))**2/x**4/(-c**2*d*x**2+d)**(1/2),x)

[Out]

Integral((a + b*asin(c*x))**2/(x**4*sqrt(-d*(c*x - 1)*(c*x + 1))), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))^2/x^4/(-c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

Exception raised: RuntimeError >> An error occurred running a Giac command:INPUT:sage2OUTPUT:sym2poly/r2sym(co
nst gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2}{x^4\,\sqrt {d-c^2\,d\,x^2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asin(c*x))^2/(x^4*(d - c^2*d*x^2)^(1/2)),x)

[Out]

int((a + b*asin(c*x))^2/(x^4*(d - c^2*d*x^2)^(1/2)), x)

________________________________________________________________________________________